Artinya terbentuk persamaan linear satu variabel sebagai berikut. $25000Γa=2Γ650000$. Kita selesaikan PLSV tersebut dengan cara yang biasa kita lakukan, yaitu: $\begin{align} a &= \frac{2Γ650000}{25000} \\ &= \frac{1300000}{25000} \\ &=52 \end{align}$. Jadi, agar dapat membeli 2 kambing, pak Embe harus menjual 52 ekor ayam.
Pertidaksamaanyang terdiri dari satu variabel dan pangkat terbesar dari variabel tersebut adalah satu. Contoh Pertidaksamaan Linear Satu Variabel. Yang manakah dibawah ini yang dianggap sebagai pertidaksamaan linear satu variabel. a. π‘ + 2 < 10. b. x + 3 = 10. c. x + 2 < x + 3. d. π 2 β 2π + 1 β€ 0. e. z - y > = 5.
10Soal Cerita Pertidaksamaan Linear/Kuadrat Satu Variabel dan Pembahasannya Reply February 05, 2018 A + A - Daftar Materi Matematika 1. Logaritma: Sifat, Operasi Hitung dan Penerapan 2. Fungsi atau Pemetaan 3. Sistem Persamaan Linear Dua Variabel 4. Sistem Persamaan Linear Tiga Variabel 5. Logika Matematika
Fast Money. ο»ΏHalo Quipperian! Pada sesi kali ini Quipper Blog akan membahas suatu topik yang menarik lho untuk kalian yaitu βMengenal Konsep Dasar dan Rumus Umum Persamaan Linear Satu Variabel PLSVβ. Tahukah kamu kalau konsep PLSV ini banyak digunakan untuk menyelesaikan soal-soal aplikasi matematika dalam kehidupan sehari-hari, dan juga tahukah kalian konsep ini juga sebagai prasyarat untuk memahami konsep dari pertidaksamaan linear satu variabel, pertidaksamaan nilai mutlak, persamaan linear dua variabel PLDV, dan pertidaksamaan linear tiga variabel PLTV. Sehingga konsep ini harus dikuasai dengan sangat baik. Bagaimana Quipperan sudah mulai tertarik ? Letβs check this out! Pengertian Persamaan Linear Satu Variabel Persamaan linear satu variabel adalah kalimat terbuka yang dihubungkan tanda sama dengan = dan hanya mempunyai satu variabel berpangkat 1. Bentuk umum persamaan linier satu variabel adalah ax + b = 0. Contohnya x + 3 = 7 3a + 4 = 1 r2β 6 = 10 Untuk memahami persamaan linear satu variabel, terdapat elemen-elemen yang perlu kita pahami yaitu tentang pernyataan, kalimat terbuka, variabel, dan konstanta. Kalimat terbuka adalah kalimat yang belum dapat diketahui nilai kebenarannya, variabel peubah adalah lambang simbol pada kalimat terbuka yang dapat diganti oleh sembarang anggota himpunan yang telah ditentukan. Konstanta adalah lambang yang menyatakan suatu bilangan tertentu, dan himpunan penyelesaian adalah himpunan semua pengganti dari variabel-variabel pada kalimat terbuka yang membuka kalimat tersebut menjadi benar. Contohnya x + 13 = 17 7 β y = 12 4z β 1 = 11 Pada bagian 1. x + 13 = 17 disebut kalimat terbuka, nilai x disebut variabel, sedangkan 13 dan 17 disebut dengan konstanta. Himpunan penyelesaiannya adalah x = 4 Pada bagian 2. 7 β y = 12 disebut dengan kalimat terbuka, nilai y disebut dengan variabel, sedangkan 7 dan 12 disebut dengan konstanta. Himpunan penyelesaiannya adalah y = -5 Pada bagian 3. 4z β 1 = 11 disebut dengan kalimat terbuka, nilai z disebut dengan variabel, sedangkan β 1 dan 11 disebut dengan konstanta. Himpunan penyelesaiannya adalah z = 3. Kesetaraan Bentuk PLSV Dua persamaan atau lebih dikatakan setara Equivalen jika mempunyai himpunan penyelesaian yang sama dan dinotasikan dengan simbol β β β. Syarat suatu persamaan dapat dinyatakan ke dalam suatu persamaan yang setara adalah dengan cara Menambah atau mengurangi kedua ruas dengan bilangan yang sama. Mengalikan atau membagi kedua ruas dengan bilangan yang sama. Contoh soal 1. Tentukan nilai x β 3 = 5 Penyelesaian Jika x diganti 8 maka nilai 8-3 = 5 {benar} syarat ke-1 Jadi penyelesaian persamaan x-3 = 5 adalah x = 8 2. Tentukan nilai 2x β 6 = 10 Penyelesaian 2x-6 = 10 β 2x = 16 syarat ke-1 Nilai x diganti dengan 8 agar kedua persamaan setara 28 = 16 β 16 = 16 . Jadi penyelesaian persamaan 2x β 6 = 10 adalah x = 8 3. Tentukan nilai x + 4 = 12 Penyelesaian x + 4 = 12 β x = 12-4 { syarat ke-1} Maka nilai x = 8 Jadi penyelesaiannya adalah x = 8 Penyelesaian Soal PLSV Cara menyelesaikan persamaan linear satu variabel adalah dengan cara substitusi. Metode substitusi adalah mengganti variabel dengan bilangan yang sesuai sehingga persamaan tersebut menjadi kalimat yang benar. Contoh Tentukan himpunan penyelesaian dari persamaan y + 2 = 5, jika nilai y merupakan variabel dan bilangan asli. Pembahasan Kita ganti variabel y dengan nilai y = 3 substitusi, ternyata persamaan y + 2= 5 menjadi kalimat terbuka yang benar. Sehingga himpunan penyelesaiannya dari y + 2 = 5 adalah {3}. Adapun langkah-langkah penyelesaian menggunakan metode substitusi adalah sebagai berikut Kelompokkan suku yang sejenis. Jika suku sejenis di beda ruas, pindahkan agar menjadi satu ruas. Jika pindah ruas maka tanda berubah positif + menjadi negatif - dan sebaliknya. Cari variabel hingga = konstanta yang merupakan penyelesaian. Contoh Tentukan himpunan penyelesaian persamaan 4x β 3 = 3x + 5. Jika nilai x variabel pada himpunan bilangan bulat. Pembahasan 4x β 3 = 3x + 5 4x- 3 + 3 = 3x +5 + 3 kedua ruas ditambah 3 4x = 3x + 8 langkah 1 kelompokkan suku sejenis 4x β 3x = 8 x = 8 himpunan penyelesaiannya adalah x = 8 Model Matematika PLSV Aplikasi PLSV banyak digunakan dalam penyelesaian masalah di kehidupan sehari-hari contohnya menentukan bilangan yang tidak diketahui, menentukan luas dan keliling tanah, penentuan jumlah hasil panen, harga jual suatu kendaraan, jumlah paket pengiriman jasa, dll. Biasanya dalam penyelesaian soal aplikasi PLSV adalah dengan membuat model matematika. mobel matematika ini digunakan dengan cara memisalkan informasi yang tidak diketahui yaitu dengan memisalkan dengan variabel tertentu pada informasi yang tidak diketahui. Contoh soal Aplikasi SPLV adalah sebagai berikut 1. Selisih dua bilangan adalah 7 dan jumlah keduanya adalah 31. Buatlah model matematikanya dan tentukan kedua bilangan tersebut. Pembahasan Model Matematikanya Bilangan I = x Bilangan II = x =7 Dan penyelesaian dari model matematika di atas adalah x + x + 7 = 31 2x +7 = 31 2x = 12 Jadi, Bilangan I = 12 Bilangan II = x+7 = 19 2. Seorang petani mempunyai sebidang tanah berbentuk persegi panjang. Lebar tanah tersebut 6 m lebih pendek daripada panjangnya. Jika keliling tanah 60 m, buatlah model matematika dan tentukan luas tanah petani. Pembahasan Misalkan panjang tanah = x dan lebar tanah = x-6 Jadi model matematikanya adalah p = x, dan l = x-6 Sedangkan untuk penyelesaian dari model matematika di atas adalah K = 2 p + l 60 = 2 x + x β 6 60 = 4x β 12 72 = 4x 18 = x Sehingga luas tanah = p x l =x x-6 =18 18-6 =18 x 12 =216 cm2 Soal dan Pembahasan dari Bank Soal Quipper Bagaimana Quipperian sudah mulai memahami konsep dan metode penyelesaian dari sistem persamaan linear satu variabel PLSV ? Agar kalian lebih terlatih lagi dalam menyelesaikan soal-soal tentang PLSV, Quipper Blog lampirkan soal-soal dan pembahasan dari bank soal Quipper yang selalu Up to Date dengan persiapan-persiapan soal ujian yang kalian akan hadapi. Letβs check this out! 1. Soal Kesetaraan PLSV Penyelesaian Dengan menggunakan langkah-langkah penyelesaian linear satu variabel, diperoleh 2. Soal Aplikasi PLSV dalam menentukan jumlah hasil panen Jika jumlah hasil panen jeruk di suatu perkebunan pada bulan ke-t dengan Bt = 80t + 75 kg, maka jumlah hasil panen jeruk sebesar 1,275 ton akan terjadi pada bulan keβ¦β¦.. Penyelesaian Diketahui B t = 80 t + 75 kg B t = 1,275 ton = 1275 kg Oleh karena B t = 80t + 75 kg dan t = 1275 kg , maka diperoleh Jadi, jumlah hasil panen jeruk sebesar 1,275 ton akan terjadi pada bulan ke-15. Bagaimana Quipperian sudah memahami dan menguasai akan konsep dan latihan soal tentang persamaan linear satu variabel PLSV ? Ternyata dengan memahami konsep dasar dan berlatih soal dari bank soal Quipper, setiap materi ternyata lebih mudah dipahami ya. Apabila Quipperian ingin memahami setiap konsep dari pelajaran lainnya, jangan ragu untuk bergabung dengan Quipper Video. Karena disana akan banyak penjelasan-penjelasan menarik dan dilengkapi dengan animasi yang kece abis pokoknya. Sehingga membuat pelajaran kalian lebih gampang, asik, dan menyenangkan. Ayo gabung bersama Quipper Video. Tampomas, Husein. 2006. Seribu Pena Matematika Jilid 1 untuk SMA/MA kelas X. Jakarta; Penerbit Erlangga Sinaga, barnok. Dkk. kelas X untuk SMA/MA. Jakarta Kemdikbud Sukino, Wilson Simangunsong. 2007. Matematika untuk SMP Kelas VII. Jakarta Erlangga Penulis William Yohanes
Blog Koma - Matematika SMP Setelah kita mempelajari "persamaan dan pertidaksamaan linear satu variabel", kita akan lanjutkan lagi pada pembahasan yang terkait dengan soal cerita yang tentunya akan lebih menantang lagi untuk kita pelajari. Pada artikel ini kita akan khusus membahas materi Soal Cerita Persamaan dan Pertidaksamaan Linear Satu Variabel. Agar mudah mempelajari materi ini, sebaiknya pelajari dulu materi "penyelesaian persamaan linear satu variabel" dan "pertidaksamaan linear satu variabel". Penyelesaian Soal Cerita Persamaan dan Pertidaksamaan Linear Satu Variabel Untuk menyelesaikan soal cerita, buatlah terlebih dahulu model matematika berdasarkan soal cerita tersebut. Kemudian, kita selesaikan berdasarkan persamaan atau pertidaksamaan. Model matematika adalah kalimat terbuka yang memuat variabel yang memiliki hubungan persamaan atau pertidaksamaan. Silahkan baca pengertian kalimat terbuka pada artikel "Pengertian Peryataan, Kalimat Terbuka dan Kalimat Tertutup". Contoh soal cerita persamaan dan pertidaksamaan linear satu variabel 1. Budi membeli 20 permen di warung yang ada di dekat rumahnya. Ketika sudah di rumah, adik-adiknya Iwan, Wayan, dan Wati meminta permen tersebut sehingga permen Budi tersisa 11 biji. Berapa banyak permen yang diminta oleh ketiga adiknya Budi? Penyelesaian *. Membuat model matematikanya, Misalkan banyaknya permen yang diminta oleh adiknya budi sebanyak $ x \, $ permen. Maka model matematikanya yaitu $ 20 - x = 11 $ Bentuk persamaan linear satu variabel $ 20 - x = 11 \, $ artinya dari 20 permen diberikan $ x \, $ permen ke adik-adinya dan sisanya 11 permen. *. Menentukan nilai $ x \, $ $ \begin{align} 20 - x & = 11 \, \, \, \, \, \, \, \text{kedua ruas dikurangkan 20} \\ 20 - x - 20 & = 11 - 20 \\ -x & = -9 \, \, \, \, \, \, \, \text{kedua ruas dikalikan } -1 \\ -1 \times -x & = -1 \times -9 \\ x & = 9 \end{align} $ Jadi, ada 9 permen yang diberikan Budi kepada adik-adiknya. 2. Setiap hari Fitri menyisihkan uang jajannya untuk ditabung di rumah. Setelah 11 hari uang Fitri menjadi Rp Berapa rupiahkah Fitri menyisihkan uangnya setiap hari? Penyelesaian *. Membuat model matematika, Misalkan setiap hari Fitri menyisihkan uangnya sebesar $ y \, $ rupiah. Model matematikanya $ 11 \times y = \, $ yang artinya setiap hari menyisihkan uang sebesar $ y \, $ selama 11 hari dengan total tabungannya Rp sehingga terbentuk persamaan linear satu variabel $ 11 \times y = $ . *. Menentukan nilai $ y $ $ \begin{align} 11 \times y & = \, \, \, \, \, \, \, \text{kedua ruas dibagi 11} \\ \frac{11 \times y}{11} & = \frac{ \\ y & = \end{align} $ Jadi, Fitri menyisihkan uangnya setiap hari sebesar Rp . 3. Jumlah tiga bilangan genap yang berurutan adalah 108. Tentukan bilangan-bilangan itu. Penyelesaian *. Model matematikanya, Bilangan genap berurutan pasti memiliki selisih 2 antara dua bilangan yang berdekatan, misalnya 2,4,6,8,10, dan seterusnya. Misalkan bilangan pertamanya adalah $ a \, $. Ketiga bilangan genapnya yaitu bilangan pertama $ a $ , bilangan kedua $ a + 2 $ , bilangan ketiga $ a + 2 + 2 = a + 4 $ , Jumlah ketiga bilangannya adalah 108, sehingga model matematikanya $ a + a+2 + a + 4 = 108 \rightarrow 3a + 6 = 108 $. sehingga terbentuk persamaan linear satu variabel $ 3a + 6 = 108 $. *. Menentukan nilai $ a $ $ \begin{align} 3a + 6 & = 108 \, \, \, \, \, \, \, \text{kedua ruas dikurangkan 6} \\ 3a + 6 - 6 & = 108 - 6 \\ 3a & = 102 \, \, \, \, \, \, \, \text{kedua ruas dibagi 3} \\ \frac{3a}{3} & = \frac{102}{3} \\ a & = 34 \end{align} $ Sehingga bilangannya bilangan pertama $ a = 34$ , bilangan kedua $ a + 2 = 34 + 2 = 36 $ , bilangan ketiga $ a + 4 = 34 + 4 = 38 $ , Jadi, ketiga bilangan tersebut adalah 34, 36, 38. 4. Sebuah persegi panjang mempunyai ukuran panjang $3x - 4$ cm dan lebar $x + 1$ cm. a. Tulislah rumus kelilingnya dan nyatakan dalam bentuk yang paling sederhana. b. Jika kelilingnya 34 cm, tentukan luas persegi panjang tersebut. Penyelesaian *. Untuk rumus keliling dan luas persegi panjang, silahkan baca pada artikel "Sifat, Keliling, dan Luas Persegi Panjang". a. Keliling persegi panjang, dengan $ p = 3x - 4 \, $ dan $ l = x + 1 $ $ \begin{align} \text{Keliling} & = 2p + 2l \\ & = 23x - 4 + 2x+ 1 \\ & = 6x - 8 + 2x + 2 \\ & = 8x - 6 \end{align} $ Sehingga keliling persegi panjangnya adalah $8x - 6$. b. Menentukan nilai $ x \, $ dengan kelilingnya 34. $ \begin{align} \text{Keliling} & = 34 \\ 8x - 6 & = 34 \, \, \, \, \, \, \, \text{kedua ruas ditambahkan 6} \\ 8x - 6 + 6 & = 34 + 6 \\ 8x & = 40 \, \, \, \, \, \, \, \text{kedua ruas dibagi 8} \\ \frac{8x}{8} & = \frac{40}{8} \\ x & = 5 \end{align} $ *. Menentukan panjang dan lebarnya dengan nilai $ x = 5 $, $ p = 3x - 4 = 3 \times 5 - 4 = 15 - 4 = 11 $ $ l = x + 1 = 5 + 1 = 6 $ *. Menentukan luas persegi panjanga Luas $ = p \times l = 11 \times 6 = 66 $. Jadi, luas persegi panjangnya adalah 66 cm$^2$. 5. Seorang petani mempunyai sebidang tanah berbentuk persegi panjang. Lebar tanah tersebut 6 m lebih pendek daripada panjangnya. Jika keliling tanah 60 m, tentukan luas tanah petani tersebut. Penyelesaian *. model matematika, Misalkan panjang tanah = $ x $ maka lebar tanah = $ x - 6$. Keliling $ = 2p + 2l = 2x + 2x-6 = 2x + 2x - 12 = 4x - 12 $. *. Menentukan nilai $ x \, $ dengan kelilingnya 60, $ \begin{align} \text{Keliling} & = 60 \\ 4x - 12 & = 60 \, \, \, \, \, \, \, \text{kedua ruas ditambahkan 12} \\ 4x - 12 + 12 & = 60 + 12 \\ 4x & = 72 \, \, \, \, \, \, \, \text{kedua ruas dibagi 4} \\ \frac{4x}{4} & = \frac{72}{4} \\ x & = 18 \end{align} $ Sehingga $ p = x = 18 \, $ dan $ l = x - 6 = 18 - 6 = 12 $. *. Menentukan luas persegi panjanga Luas $ = p \times l = 18 \times 12 = 216 $. Jadi, luas tanahnya adalah 216 m$^2$. Penyelesaian Soal Cerita Pertidaksamaan Linear Satu Variabel Untuk soal cerita yang berkaitan dengan pertidaksamaan, poin penting yang harus kita pahami adalah penggunaan tanda ketaksamaannya $>, \, \geq , \, \leq , \, \, $ dipakai jika ada kata-kata lebih dari, lebih besar, tidak lebih kecil atau sama dengan, tidak kurang dari atau sama dengan. *. Tanda $ \geq \, $ dipakai jika ada kata-kata lebih dari atau sama dengan, lebih besar atau sama dengan, tidak kurang dari, sekecil-kecilnya, minimum, minimal. Contoh soal cerita pertidaksamaan linear satu variabel 6. Umur Budi dan Iwan masing-masing $5x - 2$ dan $ 2x + 4$. Jika umur Budi lebih dari umur Iwan, maka tentukan nilai $ x $. Penyelesaian *. Menyusun model matematikanya, Kata yang digunakan "lebih dari", sehingga menggunakan tanda "$>$". Umur Budi lebih dari umur Iwan, Pertidaksamaan linear satu variabelnya $ 5x - 2 > 2x + 4 $. *. Menentukan nilai $ x \, $ $ \begin{align} \text{Keliling} & = 60 \\ 5x - 2 & > 2x + 4 \, \, \, \, \, \, \, \text{kedua ruas ditambahkan 2} \\ 5x - 2 + 2 & > 2x + 4 + 2 \\ 5x & > 2x + 6 \, \, \, \, \, \, \, \text{kedua ruas dikurangkan } 2x \\ 5x - 2x & > 2x + 6 -2x \\ 3x & > 6 \, \, \, \, \, \, \, \text{kedua ruas dibagi 3} \\ \frac{3x}{3} & > \frac{6}{3} \\ x & > 2 \end{align} $ Jadi, nilai $ x \, $ adalah $ x > 2 $. 7. Rumah ibu Suci dibangun di atas sebidang tanah berbentuk persegi panjang dengan panjang 20 m dan lebar $6y-1$ m. Jika luas tanah ibu Suci tidak kurang dari 100 m$^2$. a. Berapa lebar minimal tanah ibu Suci? b. Jika biaya untuk membangun rumah seluas 1 m$^2$ adalah Rp Berapakah biaya minimal yang harus disediakan ibu suci jika seluruh tanahnya dibangun rumah? *. Model matematika, Luas $ = p \times l = 20 \times 6y - 1 = 120y - 20 $. Kata yang digunakan luas "tidak kurang dari", sehingga tandanya "$\geq$". Model matematikanya Luas $ \geq 100 \rightarrow 120y - 20 \geq 100 $. Sehingga pertidaksamaannya $ 120y - 20 \geq 100 $. a. Menentukan nilai $ y $, $ \begin{align} \text{Keliling} & = 60 \\ 120y - 20 & \geq 100 \, \, \, \, \, \, \, \text{kedua ruas ditambahkan 20} \\ 120y - 20 + 20 & \geq 100 + 20 \\ 120y & \geq 120 \, \, \, \, \, \, \, \text{kedua ruas dibagi 120} \\ \frac{120y}{120} & \geq \frac{120}{120} \\ y & \geq 1 \end{align} $ kita peroleh nilai minimal $ y \, $ adalah $ y = 1 \, $ karena $ y \geq 1 $ . Sehingga lebar minimalnya $ l = 6y - 1 = 6 \times 1 -1 = 6 - 1 = 5 \, $ m. Jadi, lebar tanah minimal ibu Suci adalah 5 m. b. Biaya akan minimal jika luas tanah minimal, sehingga panjangnya 20 m dan lebarnya 5 m. Luas minimal $ = p \times l = 20 \times 5 = 100 \, $ m$^2$. Biaya minimal $ = 100 \times = $. Jadi, biaya minimal yang harus disiapkan oleh ibu Suci untuk membangun rumah di atas seluruh tanahnya adalah Rp 8. Pak Fredy memiliki sebuah mobil box pengangkut barang dengan daya angkut tidak lebih dari 500 kg. Berat pak Fredy adalah 60 kg dan dia akan mengangkut kotak barang yang setiap kotak beratnya 20 kg. a. Tentukan banyak kotak paling banyak yang dapat diangkut oleh pak Fredy dalam sekali pengangkutan? b. Jika pak Fredy akan mengangkut 115 kotak, paling sedikit berapa kali pengangkutan kotak itu akan terangkut semua? Penyelesaian *. Model matematika, Misalkan $ x \, $ menyatakan banyaknya kotak yang diangkut oleh mobil untuk sekali jalan. Setiap kotak beratnya 20 kg, sehingga $ x \, $ kotak beratnya $ 20x $. Total berat sekali jalan adalah berat kotak ditambah berat pak Fredy yaitu $ 20x + 60 $. Daya angkut mobil tidak lebih dari, sehingga tandanya "$\leq$". Daya angkut tidak lebih dari 500 kg ditulis $ 20x + 60 \leq 500 $. a. Menentukan nilai $ x $, $ \begin{align} 20x + 60 & \leq 500 \, \, \, \, \, \, \, \text{kedua ruas dikurangkan 60} \\ 20x + 60 - 60 & \leq 500 - 60 \\ 20x & \leq 440 \, \, \, \, \, \, \, \text{kedua ruas dibagi 20} \\ \frac{20x}{20} & \leq \frac{440}{20} \\ x & \leq 22 \end{align} $ Dari $ x \leq 22 \, $ kita peroleh nilai maksimum dari $ x \, $ adalah 22, artinya setiap kali jalan mobil box mampu mengangkut paling banyak 22 kotak. b. Agar pengangkutan dilakukan sesedikit mungkin, maka setiap kali jalan harus bisa membawa kotak paling banyak yaitu 22 kotak. Misalkan $ y \, $ menyatakan banyaknya keberangkatan perjalanan, Setiap kali jalan mengangkut 22 kotak, sehingga untuk $ y \, $ perjalanan akan terangkut $ 22y \, $ kotak. Akan diangkut 115 kotak, artinya untuk semua perjalanan minimal harus 115 kotak harus terangkut. Sehingga model matematikanya $ 22y \geq 115 $, *. Menentukan nilai $ y \, $ $ \begin{align} 22y & \geq 115 \, \, \, \, \, \, \, \text{kedua ruas dibagi 22} \\ \frac{22y}{22} & \geq \frac{115}{22} \\ y & \geq 5,227 \end{align} $ Dari $ y \geq 5,227 \, $ dan $ y \, $ bilangan bulat positifbanyaknya perjalanan, maka nilai terkecil dari $ y \, $ adalah 6. Jadi, paling sedikit 6 kali perjalanan untuk mengankut 115 kotak. 9. Suatu model kerangka balok terbuat dari kawat dengan ukuran panjang $x + 5$ cm, lebar $x - 2$ cm, dan tinggi $ x $ cm. a. Tentukan model matematika dari persamaan panjang kawat yang diperlukan dalam $ x $. b. Jika panjang kawat yang digunakan seluruhnya tidak lebih dari 132 cm, tentukan ukuran maksimum balok tersebut. Penyelsaian *. Gambar baloknya. a. Misalkan $ K \, $ menyatakan total panjang kawat yang dibutihkan untuk membuat kerangka balok. Total panjang kawat yang dibutuhkan adalah jumlah dari semua rusuknya, sehingga panjang $ K \, $ yaitu $ \begin{align} K & = 4p + 4l + 4t \\ & = 4x+5 + 4x-2 + 4x \\ & = 4x + 20 + 4x - 8 + 4x \\ & = 12x + 12 \end{align} $ Jadi, panjang kawatnya adalah $ K = 12x + 12 $. b. Panjang kawat tidak lebih dari 132 cm dapat ditulis $ K = 12x + 12 \leq 132 \, $ cm, sehingga diperoleh $ \begin{align} 12x + 12 & \leq 132 \, \, \, \, \, \, \, \text{kedua ruas dikurangkan 12} \\ 12x + 12 - 12 & \leq 132 - 12 \\ 12x & \leq 120 \, \, \, \, \, \, \, \text{kedua ruas dibagi 12} \\ \frac{12x}{12} & \leq \frac{120}{12} \\ x & \leq 10 \end{align} $ Dari bentuk $ x \leq 10 \, $ , maka nilai maksimum dari $ x \, $ adalah 10. *. Menentukan ukuran balok Panjang $ = x + 5 = 10 + 5 = 15 \, $ cm , Lebar $ = x - 2 = 10 - 2 = 8 \, $ cm , Tinggi $ = x = 10 \, $ cm. Jadi, ukuran maksimum balok adalah $15 \times 8 \times 10$ cm.
Kalian bisa pelajari pembahasan soal ini di youtube chanel ajar hitung.. kalian bisa langsung klik video di bawah ini 1. Berikut ini merupakan kalimat tertutup, kecuali...a. Ibu kota Singapura adalah Kuala Lumpurb. Delapan dikurangi tiga sama dengan limac. Bandung adalah bagian dari Jawa Baratd. Presiden pertama Amerika bernama m. Pembahasan mari kita bahas opsi di atas satu persatuKalimat A merupakan kalimat tertutup yang bernilai salah, seharusnya ibu kota Aingapura adalah B adalah kalimat tertutup yang bernilai benarKalimat C adalah kalimat tertutup yang bernilai benarKalimat D adalah kalimat terbuka karena tidak dapat ditentukan nilai kebenarannya. Jadi, jawaban yang tepat adalah D. 2. Kalimat terbuka Angka pertama suatu bilangan cacah adalah m. Agar kalimat tersebut bernilai benar, nilai m adalah... a. 0b. 1c. 2d. -1 Pembahasan bilangan cacah adalah bilangan yang dimulai dari no 0. Jadi, jawaban yang benar adalah A. 3. Diketahui persamaan -2x β 9 = 13. Nilai x yang memenuhi adalah...a. -4b. -11c. 11d. 22 Pembahasan untuk menyelesaikan persamaan tersebut, tinggal pindahkan ruas saja. Ingat setiap pindah ruas, maka tanda + dan - pasti berubah. -2x β 9 = 13 -2x = 13 + 9 catatan 9 menjadi positif karena berpindah ruas -2x = 22 x = 22 -2 x = -11 jadi jawaban yang tepat adalah B. 4. Jika x + 6 = 4x β 6, nilai x β 4 adalah...a. 0b. 1c. 2d. 3 Pembahasan untuk menyelesaikan persamaan tersebut, tinggal pindahkan ruas saja. Ingat setiap pindah ruas, maka tanda + dan - pasti berubah. x + 6 = 4x β 6 x β 4x = -6 β 6 -3x = -12 x = -12 -3 x = 4 maka nilai x β 4 = 4 β 4 = 0 jawaban yang tepat adalah A. 5. Jika x adalah penyelesaian dari persamaan -3x + 5 = x β 7, nilai x + 8 adalah...a. 3b. 5c. 11d. 14 Pembahasan -3x + 5 = x β 7 -3x β x = -7 β 5 -4x = -12 x = -12 -4 x = 3 Maka nilai x + 3 = 3 + 8 = 11 Jawaban yang tepat C. 6. Diketahui persamaan 9x + 5 = 2x - 9. Nilai x + 11 adalah...a. -14b. 9c. 12d. 13 Pembahasan 9x + 5 = 2x β 9 9x β 2x = -9 β 5 7x = -14 x = -14 7 x = -2 maka nilai x + 11 = -2 + 11 = 9 jawaban yang tepat adalah B. 7. Nilai x yang memenuhi persamaan adalah...a. -6b. -4c. 4d. 6 Pembahasan kalikan kedua ruas dengan 12, karena KPK dari 4 dan 3 adalah 12 3 x β 10 = 8x β 60 3x β 30 = 8x β 60 3x β 8x = -60 + 30 -5x = -30 x = -30 -5 x = 6 Jawaban yang tepat adalah D. 8. Nilai x yang memenuhi -2x + 4 β€ -4, dengan x bilangan asli adalah...a. 1b. 2c. 3d. 4 Pembahasan cara pengerjaan persamaan dan pertidaksamaan hampir sama. -2x + 4 β€ -4 -2x β€ -4 β 4 -2x β€ -8 x β₯ -8 -2 tanda pertidaksamaan β€ berubah menjadi β₯ karena ruas kanan dibagi dengan bilangan negatif. x β₯ 4 x haruslah bilangan yang lebih dari atau sama dengan 4. Jadi jawaban yang tepat adalah D. 9. Himpunan penyelesaian dari pertidaksamaan x β 3 β€ 5 β 3x, dengan x bilangan bulat adalah...a. {xβ£x β€1,x bilangan bulat}b. {xβ£x β€2,x bilangan bulat}c. {xβ£x β₯1,x bilangan bulat}d. {xβ£x β₯2,x bilangan bulat} Pembahasan x β 3 β€ 5 β 3x x + 3x β€ 5 + 3 4x β€ 8 x β€ 8 4 x β€ 2 jawaban yang tepat adalah B. 10. Himpunan penyelesaian dari pertidaksamaan x β 1 β₯ 2x β 5, dengan x bilangan bulat adalah...a. {xβ£x β€-4,x bilangan bulat}b. {xβ£x β€4,x bilangan bulat}c. {xβ£x β€6,x bilangan bulat}d. {xβ£x β€-6,x bilangan bulat} Pembahasan x β 1 β₯ 2x β 5 x β 2x β₯ -5 + 1 -x β₯ -4 x β€ -4 -1 tanda β₯ berubah menjadi β€ karena ruas kanan dibagi bilangan negatif x β€ 4 jadi, jawaban yang tepat adalah B. 11. Himpunan penyelesaian dari pertidaksamaan x + 3 β₯ 5x β 1, dengan x bilangan bulat adalah...a. {xβ£x β₯1,x bilangan bulat}b. {xβ£x β€1,x bilangan bulat}c. {xβ£x β₯-1,x bilangan bulat}d. {xβ£x β€-1,x bilangan bulat} Pembahasan x + 3 β₯ 5x β 1 x β 5x β₯ -1 β 3 -4x β₯ -4 x β€ -4 -4 tanda β₯ berubah menjadi β€ karena ruas kanan dibagi bilangan negatif x β€ 1 Jadi, jawaban yang tepat adalah B. 12. Himpunan penyelesaian dari -7p + 8 -30 -10 tanda karena ruas kanan dibagi dengan bilangan negatif P > 3 Himpunan bilangan yang lebih dari 3 adalah = {4,5,6,β¦} Jadi, jawaban yang tepat adalah D. 13. Sebuah persegi panjang mempunyai panjang 5 cm lebih panjang dari lebarnya. Jumlah panjang dan lebarnya adalah 19 cm. Jika lebar dinyatakan dengan m, persamaan linear yang tepat dari cerita tersebut adalah...a. m + 5 = 19b. 2m + 5 = 19c. m + 10 = 19d. 2m + 10 = 19 Pembahasan dari soal diketahui Lebar = m Panjang = 5 + m Jumlah panjang dan lebar = 19 Panjang + lebar = 19 5 + m + m = 19 5 + 2m = 19 Jadi, jawaban yang tepat adalah B. 14. Diana senang membuat prakarya origami. Setiap harinya ia membuat origami sama banyak. Setelah 12 hari, jumlah karya origaminya adalah 108 buah. Banyak karya origami yang Diana buat setiap harinya adalah...a. 9 buahb. 10 buahc. 11 buahd. 12 buah Pembahasan dari soal diketahui Banyak origami sehari = x Banyak origami 12 hari = 108 Persamaan matematika dari bentuk di atas adalah 12x = 108 12x = 108 x = 108 12 x = 9 jadi, jawaban yang tepat adalah A. 15. Jumlah dua bilangan asli berurutan adalah 119. Salah satu bilangan asli tersebut adalah...a. 63b. 62c. 61d. 60 Pembahasan Misal bilangan asli pertama = x Bilangan asli kedua = x + 1 Jumlah dua bilangan itu = 119 x + x + 1 = 119 2x + 1 = 119 2x = 119 β 1 2x = 118 x = 118 2 x = 59 bilangan kedua = 59 + 1 = 60 jadi, jawaban yang tepat adalah D. 16. Harga beras A Rp750,00 lebih mahal dari harga beras B untuk setiap liternya. Jumlah harga beras A dan beras B per liter adalah Harga beras A per liter adalah...a. Pembahasandari soal diketahui Harga beras B = x Harga beras A = 750 + x Jumlah harga beras A dan B = Harga beras A + harga beras B = 750 + x + x = 750 + 2x = 2x = β 750 2x = x = 2 x = harga beras B = harga beras A = + 750 = jawaban yang tepat adalah C. 17. Sebuah persegi panjang mempunyai ukuran panjang 3x β 5 cm dan lebar x + 3 cm. Jika keliling persegi panjang 52 cm, panjang dan lebar persegi panjang berturut-turut adalah... a. 19 cmdan 7 cmb. 18 cm dan 8 cmc. 17 cm dan 9 cmd. 16 cm dan 10 cm Pembahasan dari soal diketahui Panjang = 3x β 5 Lebar = x + 3 Keliling = 52 Keliling = 2 panjang + lebar 2 3x -5 + x + 3 = 52 24x β 2 = 52 8x β 4 = 52 8x = 52 + 4 8x = 56 x = 56 8 x = 7 panjang = 3x β 5 = 3 7 β 5 = 21 β 5 = 16 cm lebar = x + 3 = 7 + 3 = 10 cm jadi, jawaban yang tepat adalah D. 18. Diketahui keliling persegi panjang 94 cm dengan ukuran panjang 5x + 2 cm dan lebar 2x + 3 cm. Panjang dan lebar persegi panjang sebenarnya berturut-turut adalah...a. 24 cm dan 23 cmb. 25 cm dan 22 cmc. 32 cm dan 15 cmd. 36 cm dan 11 cm Pembahasan dari soal diketahui Keliling = 94 cm Panjang = 5x + 2 cm Lebar = 2x + 3 cm Keliling = 2 panjang + lebar 2 5x + 2 + 2x + 3 = 94 27x + 5 = 94 14x + 10 = 94 14x = 94 β 10 14x = 84 x = 84 14 x = 6 Panjang = 5x + 2 = 56 + 2 = 32 cm Lebar = 2x + 3 = 26 + 3 = 15 cm Jawaban yang tepat adalah C. 19. Semua siswa kelas VII berusia paling tua 16 tahun. Jika u menyatakan usia siswa kelas VII, model matematika yang tepat adalah...a. u 16 pembahasan semua siswa paling tua berusia 16 tahun, artinya semuas siswa usianya kurang atau sama dengan 16 tahun. Kurang atau sama dengan 16 tahun dapat dituliskan β€ 16 Jadi, u β€ 16. Jawaban yang tepat adalah C. 20. Rama adalah siswa kelas IX di sebuah sekolah. Ia mendapat tugas untuk membuat kerangka kubus dari kawat. Ia memiliki kawat sepanjang 80 cm. Kemungkinan panjang rusuk dari kubus yang dapat dibuat adalah, kecuali...a. 7 cmb. 6,5 cmc. 6 cmd. 5,5 cm Pembahasan dari soal diketahui panjang kawat = 80 cm panjang rusuk kubus = x untuk membuat kubus yang memiliki rusuk 12 kawatnya tidak boleh lebih dari 80 cm atau harus kurang atau sama dengan 80 cm. Kalimat matematikanya menjadi 12x β€ 80 x β€ 80 12 x β€ 6,5 Jadi panjang kawat tidak boleh lebih dari 6,5. Jadi panjang rusuk tidak boleh 7 cm. Jawaban yang tepat adalah A. 21. Himpunan penyelesaian dari X2β 25 = 0 adalah...a. {0,5}b. {-5,5}c. {5,10}d. {5,25} Pembahasan rumus untuk soal tersebut adalah x + 5 x β 5 = 0 x + 5 = 0 dan x β 5 = 0 x = -5 x = 5 Jadi, jawaban yang tepat adalah B. 22. Himpunan penyelesaian dari x2 β 2x β 35 = 0 adalah...a. {5,7}b. {5,-7}c. {-5,-7}d. {-5,7} Pembahasanx2 β 2x β 35 = 0 x β 7 x + 5 = 0 x β 7 = 0 dan x + 5 = 0 x = 7 x = -5 Jadi, jawaban yang tepat adalah D. 23. Persamaan kuadrat yang memiliki akar-akar -3 dan 7 adalah... pembahasan persamaan kuadrat dengan x1 dan x2 diketahui memiliki rumus jadi, jawaban yang tepat adalah D. 24. Sebidang tanah berbentuk persegi panjang memiliki luas 108 m2. Jika panjangnya 3 m lebih panjang dari lebarnya, lebar tanah tersebut adalah...a. 8 mb. 9 mc. 10 md. 11 m Pembahasan dari soal diketahui Lebar = x Panjang = 3 + x Luas = 108 Luas = panjang x lebar x 3 + x = 108 3x + x2 = 108 x2 + 3x β 108 = 0 x + 12 x β 9 = 0 X + 12 = 0 dan x β 9 = 0 x = -12 x = 9 lebar tidak mungkin minus -, jadi lebar = 9 cm. Jawaban yang tepat adalah B. 25. Jika kedua akar persamaan bernilai negatif, nilai p adalah... Pembahasan , maka Persamaan kuadrat memiliki akar-akar yang bernilai negatif apabila memenuhi syarat Irisan dari ketiga syarat di atas adalah p < 0 Jawaban yang tepat adalah A.
soal cerita persamaan linear satu variabel